Bremen

°
©
-8 4
Zaa
AE isf
=\ ¥
3 €
\ i
ot
<0 ®
_ ®

Virtual Reality &

Physically-Based Simulation
Techniques for Real-time Rendering

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

http://cgvr.cs.uni-bremen.de

Bremen

U Latency (Lag, Delay) g

" e
)

)

e Definition: Latency = duration from a user's action (e.g., head motion) until
display shows a change caused by the user's action ("from motion to
photons")

e Some human factors (here for visual displays):

Latency (msec) Effect on the user

>5 Noticeable
> 30 User performance decreases
> 500 Presence vanishes (and simulation fidelity)

Note: a user's head can rotate by as much as 1000 degrees/sec !

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 3

Bremen

Y The Latency Pipeline

@

60/90 Hz

60-240 Hz 30 Hz 90 Hz
c g Application
D/\/ Tgi;';g:g ” Filter i Comm. main Renderer
- I — —
~5 5 2 ? O0-11

Video
hardware

* Types/causes of lag:

e Internal to devices

%_}
16 msec

e Transportation of data over communication channel (e.g., Ethernet)

» Software (time for processing the data)

e Synchronization delay

G. Zachmann

Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

Bremen

Y General Strategies for Solutions

1. Device-server-app communication: device () sutter) Server () sutter) App.
e Put device and server into continuous
mode
 Send "keep alive" messages from client APP- server Device

to server
2. Do time-critical computing:

e Each and every module of the app
receives a specific time budget

e Module tries to compute a usable(!)
partial solution as good as possible
within the time budget

* Stop when time is up

3. Try to predict user/tracker position in x
msec's time

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

Bremen

Y Sources of Latency During Rendering

* The classical
graphics pipeline,
at least parts of it,
visualized as a
loop:

head

* Latency:

Head

pos & ori~

Transform |«——[Scene graph

Culling

Clipping |—

swap

traversal

Main
loop

Pixel scan

Viewport
mapping

Back buffer

Refresh
loop

/ Front buffer \

DAC

RGB

render

display

@ G. Zachmann

Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

ueenenn.
N NN

Bremen

Y Viewport-Independent Rendering

e Conceptual idea:
e Render the scene onto a sphere around the viewer — spherical viewport
* If viewpoint rotates: just determine new cutout of the spherical viewport
* Practical implementation:

* Use a cube as a viewport around user,
instead of sphere

e Remark: this was also one of the
motivations to build Cave's

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

2 =
7, CcG =
VR &

Bremen

)

@

* New pipeline:

* Latency:

G. Zachmann

Head
orientation
Scene graph i Locate Viewport Pixel scan
traversal ! pixel mapping
Main :
loop i
po;Itei!gg —— Transform i
o 5 Main
5 = loop
Classification Clipping |—| 2 XS
5 |3
s (o)
| \ Anti-Aliasing DAC |—| RGB
a |
©
Z
render
display |
e
8(—)
<

Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

Qe .

.9
n
(4]

v
&

<

=

i N NN NN N

Bremen

Y

"Asynchronous Timewarp" (Oculus)

* Render a bigger-than-visible viewport (not the whole cube)
 Shiftimage using current orientation of head

* Do this only in case the renderer is not finished in time:

VSYNC VSYNC VSYNC VSYNC

Render thread L2 R2
ATW thread ﬁ ﬁ ﬁ

Head tracking

(rot. only)

* Requires GPU preemption (i.e., stop GPU's pipeline, including shaders,
immediately)

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

Bremen :
¥ 3
@ Limitations 43

e Judder of animated objects

* Incorrect positions of highlights and
specular lighting

* Head rotation also changes position
of the viewpoint, but the image is
shifted only according to rotation of
viewing direction — judder for near
objects (even static objects)

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 10

Bremen

Y Multi-Threaded Rendering and Image Composition

e Conceptual idea: Display Mem 0 Display Mem | Display Mem 7
- 0, Y2 N 4 ™
e Each thread renders only its "own" h
object in its own framebuffer
* Video hardware reads framebuffer '\- L < s

including Z-buffer

* Image compositor combines individual
images by comparing the Z values of
corresponding pixels

* In practice:
* Partition set of objects

e Render each subset on one PC

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

11

<N

L1

e

Bremen

Y Another Technique: Prioritized Rendering g,

* Observation: images of objects far away from viewpoint (or slow relative to
viewpoint) change slowly

* |dea: render onto several cuboid viewport "shells" around user
* Fastest objects on innermost shell, slowest/distant objects on outer shell

* Re-render innermost shell very often, outermost very rarely
* How many shells must be re-rendered depends on:
* Framerate required by application /
e Complexity of scene L////

e Speed of viewpoint
* Speed of objects (relative to viewpoint)
* Human factors have influence on priority, too:

* Head cannot turn by 180° in one frame — update objects "behind" only rarely
e Objects being manipulated must have highest priority
e Objects in peripheral field of vision can be updated less often

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 12

Bremen

Y Efficient Memory-Layout for Fast Rendering

* Frequent problem: the elegant way to structure data (from the perspective
of software engineering) is inefficient for fast rendering

* Example for illustration: visualization of molecules

* Following good SE practice, we should design classes like this

class Atom

{
public:

Atom(uint atom number, Vec3 position, ...);
private:

Vec3 position ;

uint atom number ;

Atom * bonds [max num bonds];

};

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

“N oo

AT

14

N

3]
nEsEeneee.
GEE N .

<
=
)

Bremen

Y

@

* And the class for a molecule:

class Molecule

{

public:
Molecule(const std::vector<Atom> & atoms) ;
private:
std: :vector<Atom> atoms_;

};

 Memory layout of a molecule is now an array of structs (AoS):

G. Zachmann

pos

num bonds pos

num

bonds

pos

num

bonds

Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

15

Bremen

Y

@

e Problem with that: memory transfer becomes slow

 Alternative: Struct of Arrays (SoA)

class Molecule

{

private:

std: :vector<Vec3> position;
std: :vector<uint> atom number;

Iy

pos[0] pos[1] pos[2] . ..

atom_number[O] . ..

* Terminology: "Array of Structs (AoS)" vs. "Struct of Arrays (SoA)"

G. Zachmann

Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

16

Bremen

Y Constant Framerate by "Omitting"

e Reasons for the need of a constant framerate:

e Prediction in predictive filtering of tracking data of head/hands works only, if all
subsequent stages in the pipeline run at a known (constant) rate

e Jumps in framerate (e.g., from 90 to 45 Hz) are very noticeable (stutter/judder)
e Consider rendering as "time-critical computing":

* Rendering gets a certain time budget (e.g., 11 msec)

* Rendering algorithm has to produce an image "as good as possible"
e Techniques for "omitting" stuff:

e |Levels-of-Detail (LODs)

e Omit invisible geometry (Culling)

* Image-based rendering

e Reduce the lighting model, reduce amount of textures,

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

17

Bremen J =
% %

U The Level-of-Detail (LoD) Technique

e Example:
do you
see a
difference?

* |dea: render a reduced version of the object, where the amount of reduction is
chosen such that users cannot see the difference from the full-resolution version

® G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 19

Bremen

)

@

e Definition:
A level-of-detail (LOD) of an object is a simplified version,
i.e., a model that has less polygons.

* The technique consists of two tasks:
1. Preprocessing: for each object in the scene, generate k LODs

* Forinstance, we generate LODs at 100%, 80%, 60%, ..., of the number
of polygons of the original model

2. Runtime: select "right" LOD, make switches between LODs unnoticeable

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

20

Bremen

Y

®

Selection of the LOD

* Balance visual quality against "temporal quality"
e Static selection algorithm:
o Level i for a distance range (d;, dii1)

e Optimal distance ranges depend on FoV
* Problem: size of objects is not considered

LOD

100% 50%

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023

Real-time Rendering

30%

21

Bremen

@ Typical Use Case: Terrain Rendering

Level of Detail
(LOD)

low

ATy sdium
/ mec

high

@ G. Zachmann Virtual Reality and Physically-Based Simulation

WS November 2023

Different LOD on terrain tiles

Real-time Rendering

22

Bremen

Y

®

Improved Static Selection

» Estimate size of object on the screen

e Advantage: independent from screen resolution,
FoV, size of objects

* LOD depends on distance automatically

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023

Real-time Rendering

23

Bremen

Y Estimation of the Size of an Object on the Screen

* Naive method:

e Compute bounding box (bbox) of object in 3D (probably already known by
scenegraph for occlusion culling)

* Project bbox onto 2D — 8x 2D points
e Compute 2D bbox (axis aligned) around 8 points
e Better method:

e Compute true area of projected 3D bbox on screen

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

24

Bremen

Y Idea of the Algorithm

e Determine number of sides
of 3D bbox that are visible:

* Project only points on the
silhouette (4 or 6) onto 2D:

e Compute area of this
(convex!) polygon

@ G. Zachmann Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

<n
-1

25

Bremen

Y Implementation FY] ‘

* For each pair of (parallel) box sides (i.e., each slab):
classify viewpoint with respect to this pair into "below", "above", or
"between"

* Yields 3x3x3 = 27 possibilities
* In other words: the sides of a cube partition space into 27 subsets
 Utilize bit-codes (a la out-codes from clipping) and a lookup-table
* Yields LUT with 26 entries (conceptually)
* Each of the 27-1 entries of the LUT lists the 4 or 6 vertices of the silhouette

* Then, project, triangulate (determined by each case in LUT), and
accumulate areas

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 26

Bremen

Y Psychophysiological LOD Selection

* |dea: exploit human factors with respect to visual acuity

e Central / peripheral vision:

e (0-bi)/ar g~ p PR et
ki = : 4, """""" \>

1 sonst

* Motion of obj (relative to viewpoint):

* Depth of obj (relative to horopter):

_ leo—pl—b3
k3 =€ 3

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real‘time Rendering 27

Bremen

. .
H =

. g 0‘ :':
& =

s o

. co o

VR

e Determination of LODs:
1. k=min{k} -k, oder k=][kik
2. Mpin = 1/k (or similar transfer function)
3. Select level I suchthat Vp € P;: r(p) > fmir _~where P, is the set of
polygons of level I of an object, and r(p) = radius of polygon p
* Do we need eye tracking for this to work?
* Maybe ...
e Psychophysiology: eyes usually never deviate > 15° from head direction

* So, assume eye direction = head direction, and choose b;=15°

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 28

Bremen : =
;=

Y Example Scenario

Start

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 29

Bremen

Y Problems of Static LoD Selection

® G. Zachmann

Tine [s)

o

o

[

Frames 2350
a) No LoD's

Virtual Reality and Physically-Based Simulation

Time (3)

Frames

25Q

b) Static LoD selection

WS November 2023

Real-time Rendering

30

Bremen

U Reactive vs. Predictive LOD Selection

e Reactive LOD selection:

» Keep history of rendering durations

Based on the history, estimate duration T, for next frame,

Let T, = time budget that can be spent for next frame

 Usually constant, e.g., 11 msec for 90 Hz framerate

If T, > Ty, : decrease LODs (use coarser levels)

If T, < Tp: increase LODs (finer levels)
e Then, render frame and record actual rendering time in history

* Reactive LOD selection can produce severe outliers

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023

Real-time Rendering

31

Bremen

U Predictive LOD Selection

* Definition object tuple (O,L,R):
O = object, L =level,
R =rendering quality (#textures, #light sources, ...)

» Evaluation functions on object tuples:
cost(O,L,R) = time needed for rendering
benefit(O,L,R) = "contribution to image"

e Optimization task: find rsr)a>5< Z benefit(O, L, R)
(O,L,R)eS’

under the condition T, = Z cost(O, L,R) < T,
(O,L,R)eS’

where § = { all possible object tuples in the scene }

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

32

Bremen

)

@

e Cost function depends on:
* Number of vertices (= # coord. transforms + lighting calcs + clipping)
 Setup time per polygon
* Number of pixels (scanline conversions, alpha blending, texture fetching, anti-

aliasing, Phong shading)

 Theoretical cost model: Cost(O, L, R) = maX{CrPoly + Cz-Vert}

C3‘PiX€|S

* Better determine the cost function by experiments: t

Render a number of different objects _ '
with all different parameter settings -

possible

polygons

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

34

Bremen

)

@

* Benefit function: "contribution" to image is affected by

G. Zachmann

Size of object

Shading method: Rendering(O, L, R) = <

(c
1 #pgons
C
1 Fvert
C
\ 1 Fvert

Distance from center (periphery, depth)
Velocity (similar to psychophysiological LOD factors)

Hysteresis for penalizing LOD switches: Hysteresis(O, L, R) =

- Gouraud

, per-pixel

Semantic "importance" (e.g., grasped objects are very important)

C
-+

3.
¥. CG &
VR

8

1+ |L— L]

Together: Benefit(O, L, R) =Size(O)-Rendering(O, L, R) -Importance(O)

-OffCenter(O) -Vel(O)-Hysteresis(O, L, R)

Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

1 +|R—R|

35

Bremen

)

@

e Optimization problem = multiple-choice knapsack problem — NP-complete
* |dea: compute sub-optimal solution

e Reduce it to continuous knapsack problem (see algorithms class)

* Define

value(O, L, R) benefit(O, L, R)

cost(O, L, R)

* Solve this greedily:

 Sort all object tuples by value(O,L,R)
e Choose the first k tuples until knapsack is full

» Additional constraint: no 2 object tuples must represent the same object!

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

36

Bremen

)

* Incremental solution:

 Start with solution (01, L1, R1),...,(0O,, L,,R,) as of last frame

o |f Zcost(O,-, L;, R;) < max. frame time

then find object tuple (Ox, Lk, Rx),
such that

value(Oy, Ly + a, R + b) — value(O, Lk, Rx) = max

and
Z cost(O;, L, R;) + cost(Ok, Lk + a, R + b) < max. frame time
ik

* Proceed analog, if Zcost(O,-, L;, R;) > max. frame time

1
@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

37

Bremen

Y Performance in the Example Scenes

@

G. Zachmann

0 |

c) Reactive LoD selection

(3)

Time

0

c) Predictive LoD selection

Start

Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

38

e

@J Problem with Discrete LODs ‘Jﬁ

* "Popping" when switching to next higher/lower level

1. Simplest solution: temporal hysteresis (reduces frequency of pops,

especially filters out short back-and-forth pops)

® G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 39

2. Alpha blending of the two adjacent
LOD levels ("Alpha-LODs"):

* Instead of switching from level i to i+1, fade out
level i until gone, at the same time fade in level i+1

e "Man kommt vom Regen in die Traufe"
e Don't use them!

3. Continuous, view-dependent LODs
using progressive meshes

Bremen

W Progressive Meshes bl

e A.k.a. Geomorph-LODs
* Initial idea / goal:
e Given two LODs M; and M, of the same object

e Construct mesh M’ "in-between" M;and M,

» Definition: progressive mesh = representation of an object, starting with a
high-resolution mesh My, with which one can continuously (up to the

vertex level) generate "in-between" meshes ranging from 1 polygon up to
My, (and do that extremely fast).

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 40

U Construction of Progressive Meshes

* Approach: successive simplification, until only 1 polygon left

a

* The fundamental operation: edge collapse

LU

» Reverse operation = vertex split

a

* Not every edge can be chosen: beware of bad edge collapses

‘ polygon overlap!

® G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

41

Bremen J

* The direction of edge collapses is important, too:

" e
- .

* Introduce measure of edge collapses that evaluates "visual effect"
e Goal: first perform edge collapses that have the least visual effect

* Remark: after every edge collapse, all remaining edges need to be evaluated
again, because their "visual effect" (if collapsed) might be different now

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 42

Bremen

e Progressive mesh = sequence of edge collapses / vertex splits:

unn
e

ecolp1 ecol; ecolg

vsplity.1 vsplit; vsplity

e Mi=j-th refinement = 1 vertex more than Mi-1

* Representation of progressive mesh =
list of ecol/vsplit operations

ecol
vsplit
* Representation of an

edge collapse / vertex split:

* Edge (= pair of vertices) affected by the collapse/split

e Position of the "new" vertex

 Triangles that need to be deleted / inserted

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 43

Bremen

Y

@

* Evaluation function for edge collapses is not trivial and, more importantly,
perception-based!

e Factors influencing "visual effect":
e Curvature of edge / surface
* Lighting, texturing, viewpoint (highlights!)
e Semantics of the geometry (e.g., eyes & mouth are very important in faces)

* Examples of a progressive mesh:

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

D)
«

44

<N

L1

e

Bremen

Y A Simple Edge Evaluation Function

e Motivation: Low visual

disturbance

BTOC.ATOC.
CTOA.CTOB.

e |f surface incident to U has a smaller (discrete) curvature than surface around V,
then move vertex U onto vertex V

High visual
disturbance

* Follow this heuristic:

e Delete small edges first; and,

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

45

Bremen

)

* Asimple measure for the "costs" of an edge collapse from U onto V:

cost(U, V) =||U — V||-curv(U)
* Note: the cost function is not

symmetric (which is good):

cost(U, V) # cost(V, U)

@ G. Zachmann Virtual Reality and Physically-Based Simulation

ny

WS November 2023

Real-time Rendering

46

Bremen . . . L‘J
Y Simple Method to Calculate a Rough Estimate of the Discrete Curvature fﬁ

* Calculate "curvature" along each edge e; = (U,V)):

(ny, —ny)-(Vi = V)
Vi — U2

curv(e) =

e Calculate estimate of "curvature" at U as
geometric mean of incident edges:

curv(U) = (f[curv(e,-)) %

* Alternative to step 2:

* Find the two edges e1 and e with minimal and Vertex normals must have unit length!
maximal curvature, ki1 and k>, resp.

o Set curv(U) = (ki + ko)

® G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 47

Bremen

@ Reasoning Behind the Curvature Formula

e Consider a cross-section through U, one of the
V's and the edge e=(U,V)

e Assume a circle through U, V with radius r and
center C, and assume the normals are
perpendicular to the circle; then

V=C+rmy U=C+rny
V—U:r(n\/—nu)

1_|nv—ny|
rV=U|

curv(e) =

e Make it more "robust" in 3D by first projecting
(nv — ny) onto the edge:

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023

curv =

(l‘l\/ — I’lu)'(\/— U)O

IV = U
(nv —nu) =g
IV —=Ul

_ (l‘l\/ — I’lu)-(\/— U)

v = Ul

Real-time Rendering

48

Bremen

Y Demo

[NN] DynamicLOD

Current Faces: 47,292 ‘ 3 Max Number of Faces: 47,29i

How can the Funkhouser-Sequin algorithms be combined with

progressive meshes? And implemented on the GPU? Master Thesis ...

® G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

CcG
VR

49

Bremen

Y

@

View-Dependent LOD's

 Select different resolution within the same object, depending on the view
point, i.e., different parts of one object are rendered at different resolutions

* Define a metric measuring screen space error (measured in pixels)

* Example: terrain — choose resolution according to projected area

View from ee point Birds-eye view

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

50

Bremen

Y

@

» Additional factor: visual importance

* Example: render closed objects with higher

resolution near silhouette border

e Maximal screen space error
is modulated by (v-n)

* Other potential criteria:
e Specular highlights

 Salient features, e.qg., feature points in faces

e Overall criteria:
e Triangle budget

* Time budget (remember time critical
computing)

G. Zachmann Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

51

Bremen

Y Pros and Cons @;%

e Advantages of Dynamic LODs (e.g., progressive meshes):

. : Master's Thesis
No popping artefacts topic: is it possible to
* Can be turned into view-dependent LOD implement p e meshes (or
other kind ic LOD) in
 Better rendering fidelity for given polygon count the GPU's vertex
buffers?
e Advantages of Static LODs:

e Extremely simple for the renderer

e Simple for the programmer, too, i.e., easy to implement

* No CPU overhead during rendering
e Can upload LODs to GPU as vertex buffer objects (VBO)

® G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023

Real-time Rendering 52

FYI (not relevant for exam)

U Other Kinds of LODs

* |dea: apply LOD technique to other, non-geometric content

* E.g. "behavioral LOD":

e If in focus, simulate the behavior of an object exactly, otherwise simulate it only
"approximately"

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

53

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Y Portal Culling (Culling in Buildings)

* Observation: many rooms
within the viewing frustum
are not visible

e |dea:

e Partition the VE into "cells"

— visibility graph

® G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023

Real-time Renderin

Gabriel Zachmann
FYI (not relevant for exam)

Bremen

Y

FYI (not relevant for exam)

* During runtime, filter cells from visibility graph by viewpoint and viewing
frustum

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

=

55

CcG
VR

Gabriel Zachmann
FYI (not relevant for exam)

U Test Your Knowledge of the Human Visual System

Please,

don't spoil by
"look-ahead"!

https://www.menti.com/smvndia2ss

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

. .
3

- 4 -
N o

\ l.l

A =

3 -

. cc =

R =

56

Bremen J

Y Foveated Rendering TtShapes B

" e
e

Colors

® & %
e Recap of some factors of our human A
Z

visual system (HVS):
* Critical flicker frequ. in periphery = 85 Hz

rods

* Fovea = area of high visual acuity = 5° :

Resolution in fovea = 1 arcmin !

Receptor Densi
4

At 20° eccentricity, spatial res. = 7.5 arcmin N

70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90

Midget (ganglion) cells collect and L T
process cones' signals, then forward to 10% 5
brain — their density influences our visual
acuity

=== Cones - 102

—e— Midget

107 - - 10!

Cells / Degree
Cycles / Degree (cpd)

* Fovea covers = 4% pixels of HMD

100

. . 10° - - -
e Most pixels in HMD's are wasted! 0 5 10 15 20 25 30 35 40

Eccentricity (Degrees)

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 57

Bremen

Y

®

Foveated Rendering Technique

* Prerequisite: eye gaze tracking

e Goal: reduce image resolution towards
periphery (subsampling)

e Approach:

* Render 3 overlapping, nested "eccentricity
layers" (render targets)

* Each layer has its own image resolution (and

LOD levels) — different sampling spacing!

* Interpolate outer layers to final display
resolution, then blend together

* Optionally: update outer layers with lower
frame rate

G. Zachmann Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

58

Bremen

Y

®

Blending the Layers

* Overlay on top of each other

e Calculate blend weights, depending on radius of pixel from center (i.e.,
gaze direction)

e Visualization
of blending
weights:

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

59

Bremen

w Challenges

* Latency: time elapsed between capturing the eye gaze direction and
displaying the corresponding foveated image

* Experience shows:

* 60 Hz monitor, 50 Hz eye tracker, 35 ms latency — obvious "pop" in image
resolution

* 120 Hz monitor, 300 Hz eye tracker, 10 ms latency — no visible "pop"
 Aliasing:
e Quter layers have wide "pixel" stride — aggravates aliasing artifacts

* Periphery is very sensitive to temporal changes — moving aliasing artifacts are
extremely distracting / annoying

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 60

Bremen :
%/
i ce

@ Anti-Aliasing Methods s

e MSAA (Multi-Sample Anti-Aliasing): standard in GPU's, sample each pixel
multiple times (e.qg., by grid, or other pattern, within each pixel)

* Whole frame jitter sampling plus temporal reprojection:

jitter relative to eccentricity B .‘ ‘ '
layer sampling grid %

changes each frame » native display

ﬁ* . o
prewous frame | \" N * b / sampling grid
. ‘ il L e Je . . 2 ol’:" \ P .

yj | o *&‘&«

L.? .\ current frame \

eccentricity layer eccentricity layer region temporal reprojection
sampling grid jittered + .5 sample

bilinear interpolation to
native display sampling grid

® G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 61

Bremen

@ Blending and Anti-Aliasing at Work

Smooth Composition

® G. Zachmann

o

62

Bremen

¢ &
Y More on the Human Visual System
e Definition:
* Imagine a grating of black and white lines next to each other
* Minimum angle of resolution (MAR) w = smallest angle of a cycle of white-black
lines still visible
o Visual acuity = — L .
minimum angle of resolution
 Units: g1
] Details are clearly Zone of
* MAR = degrees (°) = degrees per cycle B gle;icggble without aliasing
= 1asl
* Acuity = frequency (Hz) = cycles per degree gt?
>
e Standard model for MAR: el L
W= " Details become invisible,
w = me + wo o without aliasing
with e = eccentricity, w° = MAR at fovea eccentricity angle)
G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 63

@

Bremen

Y Connection Between Model and Rendering Speed

* Task: given a specific slope in the MAR model, m, and the number of eccentricity

layers, choose the radii of the layers

e Radii e1, e2 determine the total
number of pixels to be rendered

e Determine by optimization

e E.g.: brute force, choose ¢4, e,
with 0 < e1 < 2 < €%,
then count the number of pixels

*

0
e Question: what is the

middle
layer

outer
layer

v

best parameter m? W foveal
» Smaller m — larger radii, layer
more pixels to be rendered, e
less savings
@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023

€2

Real-time Rendering

64

b’} "
. cc =
VR

Bremen

Y user Study to Determine Parameters

e Slider test:

* Present participants the non-
foveated animation sequence first

e Then start with low degree of
foveation (high rendering quality)

* Let users increase level of foveation
(decrease rendering quality) until
just noticeable artifacts appear

* Conditions: different animation
speeds

e Results:

G. Zachmann Virtual Reality and Physically-Based Simulation

Count of users

40 -

30 -

N
o
1

-
o
1

Animation

0 5 10

15

25

Foveation level that users still found acceptable

WS November 2023

Real-time Rendering

65

Bremen

w Video of User Study

@ G. Zachmann

o Cece

.9
n
(4]

v
&

<

=

i N NN NN N

66

Bremen

Y

@

&
Speedup, Overall Results Ly
50 t
A B — Determined by experiments
40 : ,
Number of pixels on display
over

o number of pixels rendered
S 30
T
7
Y Rendering time of foveated version

20 \ over

\ rendering time of un-foveated version
10 ~_
.\\
0 T T | T | T T | T T | | T T T T T T T | T | T 1
4 6 8 10 12 14 16 18 20 22 24 26 28 30
foveation quality
G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 67

Bremen

Y

@

G. Zachmann

12
Layer
1 =inner
10 !
2 = middle,
3 = outer.
o 8 S =sum
£
- S
™
-4 — 1]
wv
£ —_—)
— 3
0 T 71 17T 1717171717 17T T 17T 17T 17T 17T 17T 17T 17T 17T 17T 71T 71T 7171

4 8 12 16 20 24 28
foveation quality ~ inner radii of layers 2 and 3

Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

CcG
VR

68

Bremen

Y Further Improvements

* In order to reconstruct the whole
image, use GANs (generator
adversarial networks), instead of
layered rendering, followed by
anti-aliasing and blending

* |dea:

* Generate mask with high density
at fovea, low density in periphery

* Render image at mask points
e Fill in other pixels using GAN

 Train GAN on large number of
frames from video games and
natural scene

® G. Zachmann Virtual Reality and Physically-Based Simulation

WS November 2023

Sparse foveated video §

.......

Real-time Rendering

["DeepFovea ...", 2019]

69

Bremen ‘J -
Y Comparison with Ground Truth C?*i

Our reconstructed results

r

-

Runtime performance: 9 ms, using 4x NVIDIA Tesla V100 GPUs (2019)

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 70

Bremen

W Get Creative: Are You Aware of Any Other Human Factors of the HVS
that Might, Perhaps, be Utilized to Improve Rendering Performance?

https://www.menti.com/smvndia2ss

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

.
-
~3F P,
4 =
3 =
& -
. cc &
¥

71

Bremen

)

@

FYI (not relevant for exam)

State Sorting

e A state in OpenGL rendering =
e Combination of all attributes (JlL)

e Examples for attributes: color, material, lighting parameters, textures being used,
shader program, render target, etc.

e At any time, each attribute has exactly 1 value out of a set of possible attributes
(e.g., color €{(0,0,0), ..., (255,255,255) }

 State changes are a serious performance killer!

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

72

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen :

W
@ Costs of state changes in modern OpenGL [2014]

TLETrres

Render target. | UL

Shader ~300K / s
ROP

Texture binding

Vertex format
Uniform buffer

Vertex binding

Uniform updates

Not to scale!

e Goal: render complete scene graph with minimal number of state changes

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 73

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen

Y Solution: Sorting by State .

* Problem: optimal solution is NP-complete
* Proof:

e Each leaf of the scene graph can be Cn) @A) One obiect
. = —
regarded as a node in a e rer.

complete graph graph)
e Costs of an edge = costs of the corresponding

state change (different state changes cost @\ @m

differently, e.g., changing the transform is

cheap) @)
* Wanted: shortest path through graph

» Traveling Salesman Problem

e Further problem: precomputation doesn't
work with dynamic scenes and occlusion
culling

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 74

Gabriel Zachmann
FYI (not relevant for exam)

Bremen

)

@

Introducing the Sorting Buffer

FYI (not relevant for exam)

For the sake of argument: consider only one kind of attribute ("color")

Introduce a buffer between application and graphics card

e (Could be integrated into Sequence of objs Buffer for state sorting ~ Graphics hardware

the driver, since an OpenGL 000D — 00 0

command buffer already exists)

Buffer contains k elements

Perform one of 3 operations with each draw call (= app sends a "colored
element" to the hardware/buffer):

1. Pass element directly on to graphics hardware; or,
2. Store element in buffer; or,

3. Extract subset of elements from buffer and send them to graphics hardware

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 75

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen

Y Interlude: Online Algorithms

* There are 2 categories of algorithms:

* "Online" algorithms: the algorithm does not know which elements will be received
in the future!

e "Offline" algorithms: algo does know elements that will be received in the future
(for a fair comparison, it still has to implement a buffer, but it can utilize its
knowledge of the future to decide whether to store elements)

* In the following, we consider only "lazy" online strategies:
 Extract elements from the buffer only in case of buffer overflow

 This is wlog., because every non-lazy online strategy can be converted into a lazy
one with the same complexity (= costs)

e Question (in our case): which elements should be extracted from the buffer
(in case of buffer overflow), so that we achieve the minimal number of color
changes?

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 76

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen

Y Interlude: Competitive Analysis

e Definition c-competitive :
Let Cor(k) = costs of optimal offline strategy,

let C,,(k) = costs of some online strategy,
"cost" = number of color changes, k = buffer size.

Then, the online strategy is called "c-competitive", iff
Con(k) =C- Coff(k) + a
where a must not depend on k (¢ may depend on k).

The ratio g°“((l/3 ~ c iIs called the competitive-ratio.
off

* Wanted: an online strategy with ¢ = c(k) as small as possible
(i.e., c(k) should be in a low complexity class)

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

77

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen

U Example: LRU strategy (Least-Recently Used) g

* The strategy:
e Maintain a timestamp per color (not per element!)
* When element gets stored in buffer — timestamp of its color is set to current time
* Notice: this way, timestamps of other elements in buffer can change, too

* Buffer overflow — extract elements, whose color has oldest timestamp

« The lower bound on the competitive-ratio: 2(v/k)

* Proof by example:
e Setm =k — 1, wlog. m is even
e Choose the input (¢; -« - cmx ey - - - cmy*)
o Costs of the online LRU strategy: (m+1)-2-% color changes

N[3

o Costs of the offline strategy: 2-7 + m = 2m color changes,

because its outputis (x*y)2¢m-..c™

m

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 78

Gabriel Zachmann
FYI (not relevant for exam)

Bremen

@

FYI (not relevant for exam)

|dea:

e Count the number of all elements in the buffer that have the same color

* Extract those elements whose color is most prevalent in the buffer
Introduce waste counter W(c) :

e With new element on input side: increment W(c), ¢ = color of new element
Bounded waste strategy:

e With buffer overflow, extract all elements of color ¢', whose W(c') = max
Competitive ratio (w/o proof): O(log® k)

Random choice strategy:

e Randomized version of bounded waste strategy

e Choose uniformly a random element in buffer, extract all elements with same
color (note: most prevalent color in buffer has highest probability)

* Consequence: more prevalent color gets chosen more often, over time each
color gets chosen W(c) times

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

Y The Bounded Waste & the Random Choice Strategy .l

79

Gabriel Zachmann
FYI (not relevant for exam)

Bremen

)

@

FYI (not relevant for exam)

The Round Robin Strategy

* Problem: generation of good random numbers is fairly costly
* Round robin strategy = variant of random choice strategy:

* Don't choose a random slot in the buffer

* Instead, every time choose the next slot (hence, "round robin")

e Maintain pointer to current slot, move pointer to next slot every time a slot is
chosen

G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

80

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen

Y Comparison

* Take-home message:

e Round-robin yields very good results (although/and it is very simple)

* Worst case doesn't say too much about performance in real-world applications

45000 C T T il 150
40000 |- — FKIFO
it LRU
R, — MCF
35000 s aN RR
N et NIV Ve VAR AN /]
\ \ AT A / A
\/ \\"‘/ IVAWARN /\/“f \ f I\ /\ 8
30000 \[N N/ \ /) 7N / s
n r Y N \ x"‘\/ /] £
< “.“-‘"‘ ."f’l ~
D)25000 =: 4 3
2 ul]
s £ 100
O 20000 - ;’
[c
— “
S L e 1 .=
& 15000 |- \ s W J o _
r] '8 - - without pipeline buffer | -
i e, 1 5 — FIFO
10000 [~ — e — o L LRU
— = — MCF
5000 7 N — RR
e presorted sequence
oC . | |] 50 | | L L | L | | |
0 50 100 0 50 100
Buffer size Buffer size

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 81

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen

Y "Asynchronous Spacewarp" (Oculus)

e Oculus display refreshes at 90 Hz; if application can render only at
45 Hz, ASW produces frames "in between" by prediction:

Rendered by app. 1/90's
l l —_—A

| | | | | |] I
1 | | |
| |]
Predicted by ASW from
previous 2 app. frames

A 4

* Some details about the method (speculative):

 Extra thread kicks in, if app has not finished rendering in time; stops rendering
and graphics pipeline (GPU preemption)
e Take previous two images, try to predict 2D motion of image parts

* Optical flow algorithms? use GPU video encoding hardware?

* Fill holes by stretching neighborhood (image inpainting)

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

o

82

=0
e

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen : =

&
@ Example Frames (Can You Spot the Artefacts?) | ’g

Frame generated = ==

Change in
lighting Disocclusion

trail

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 83

Gabriel Zachmann
FYI (not relevant for exam)

FYI (not relevant for exam)

Bremen

Y Stereoscopic Image Warping (Stereo Without 2x Rendering) B

" e
- .

VR

* Observation: left & right image differ not very much

* |dea: render once for right image, then move pixels to corresponding
positions in left image — image warping

* Algoritm: consider all pixels on

each scanline from right to left,
draw each pixel k at the . In

new x-coordinate x, = x, + — :
Az + 2z \

where A = pixel width :

\}|\
\\ /"\\ 1
€ Zy ' ?\;IJ

\ 20
* Problems: \

» Up-vector must be vertical L
e Holes! ‘ S
e Ambiguities & aliasing €
 Reflections and specular highlights are at wrong position

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

-
-
-

’
I’,
\

84

Gabriel Zachmann
FYI (not relevant for exam)

Bremen

U Reducing Latency by 3D Image Warping

@

* Asimple VR system:

® Latency in this system (stereo with 60 Hz — display refresh = 120 Hz):

G. Zachmann

System |

Tracking
system

ln

Appl.

To Q T4 | Display
X (e.g. HMD)
User

-
LP

Renderer

Virtual Reality and Physically-Based Simulation

WS November 2023

16.6 ms New appl.
— frafne
L R R '
Display |———| e e e e e
|
o 1 I . T2 Ts -||r4
Tracker l Application (Simul) l Renderer swhplock
S S S
10 ms 30 ms 50 ms 8 ms

Real-time Rendering

b'] E,
. cc =

85

e

VR

Bremen

Y Issues & Observations

* The appl. framerate (incl. rendering) could be much slower than the display
refresh rate

* The tracking data, which led to a specific image, were valid some time in the
past

e The tracker could deliver data more often

e Consecutive frames differ from each other (most of the time) only relatively
little (— temporal coherence)

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 86

Bremen

)

@

G. Zachmann

Appl. renderer
(client)

20 Hz

GPU 1

Input devices

(tracE:r)/

Simulation / Animation

Object transform.,
camera position

y

Y

&

Camera
position

Shared
scene graph Only
object
transf.
Framebuffer
object (FBO) Texture

Virtual Reality and Physically-Based Simulation

shared memory

>

Warping
renderer
(server)

Transform
10242 GL_POINTs
(or use CUDA)

60 Hz

Y

GPU 2

WS November 2023

Real-time Rendering 87

" e
e

=

&
Idea: Decouple Simulation/Animation, Rendering, and Tracker Polling -

n

Bremen

Y An Application Frame (Client)

e At time t;, the application renderer generates a normal frame
e Color buffer and Z-buffer
» Henceforth called "application frame"

* ... but also saves additional information:

1. With each pixel, save ID of object visible at that pixel (e.g., into separate frame
buffer object)

2. Save camera transformations at time t; : Ty, cameimg and Ty, wid<cam

3. With each object i, save its transformation t"llobj(_W,d

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

88

Bremen

Y Warping of a Frame (Server)

e

At a later time, t,, the server generates an image from an application frame
by 3D warping
* Transformations known at this time:

i
tr,wld<—obj th,img<—cam 7_tg,cam<—w/d

A pixel P, = (x, y, z) in the application frame will be "warped" (transformed)

to its correct position in the (new) server frame:

i
PS — th,img<—cam° 7_zfg,cam<—wld' to,wld<obj’
i
t1,obj<wld’ Ttl,wld<—cam) Ttl,cam<—img) 'DA

+ Server frame
e This transformation matrix can be precomputed
for each object and each new server frame

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 89

Bremen

@ Pixel in

appl frame
at time t; P;

) Tt1 ,cam«—img

y

Camera (t;) V\f%l?ﬁ@étﬂ
sapRkFamee |
" > Tt1 wld<«—cam (tgj: tlme t1
World (t)) ' \?(Civogid (tp)
T oDj<—w
> bl Can;era 5)

X ‘4(////
> tr,wld<«—obj

Camera (t,)

\/ X
th,cam<—wld T.

Virtual Reality and Physically-Based Simulation WS November 2023

@ G. Zachmann

Warped
Server Frame

(t2)

N— "

tr,img<«—cam

P,

Real-time Rendering

90

e

Bremen ¢ =
-

"nn & =
Y Remarks o

* Implementation of the warping:

* Could be done in the vertex shader

* Doesn't work in the fragment shader, because the output (= pixel) position is fixed in
fragment shaders!

 Better do the warping in CUDA, one thread per pixel in the appl frame

* Note: the server (warping) renderer does use current (t2) positions of
animated/simulated objects!

* Advantages:

e The frames (visible to the user) are now "more current", because of more current
camera and object positions (i.e., animated objects)

 Server framerate is independent of number of polygons

* With additional tricks, re-lighting is possible (to some extent)

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 91

Bremen

@ Problems

* Holes in server frame
* Need to fill them, e.g., by ray casting
e Server frames are fuzzy
(because of point splats)
* How large should the point splats be?

* The application renderer (full image
renderer) can be only so slow
(if it's too slow, then server frames
contain too many holes)
* Unfilled parts along the border of the server frames
* Potential remedy: make the viewing frustum for the appl. frames larger
e Performance gain:
* 12M polygons, 800 x 600 frame size
 Factor ~20 faster

@ G. Zachmann Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering 92

unn
-]

)

Bremen

Y videos

@ G. Zachmann

Virtual Reality and Physically-Based Simulation

WS November 2023

Real-time Rendering

93

% CG

VR

Virtual Reality and Physically-Based Simulation WS November 2023 Real-time Rendering

